The impact of stochastic microstructures on the macroscopic fracture properties of brick and mortar composites
نویسندگان
چکیده
This paper examines the effect of non-uniformmicrostructures on themacroscopic fracture properties of idealized brick and mortar composites, which consist of rigid bricks bonded with elastic–plastic mortar that ruptures at finite strain. A simulation tool that harnesses the parallel processing power of graphics processing units (GPUs) was used to simulate fracture in virtual specimens, whose microstructures were generated by sampling a probability distribution of brick sizes. In the simulations, crack advance is a natural outcome of local ruptures in the cohesive zones bonding the bricks: the macroscopic initiation toughness for small-scale yielding is inferred by correlating the critical load needed to advance a pre-defined crack with an associated far-field energy release rate. Quantitative connections between the statistical parameters definingheterogeneous brick distributions and the statistics of initiation toughness are presented. The nature of crack tip damage and stresses ahead of the crack tip are illustrated as a function of brick size variability. The results offer quantitative insights that can be used to identify microstructural targets for process development, notably specific brick size distributions that still providemacroscopic toughening. © 2015 Published by Elsevier Ltd.
منابع مشابه
GPU-based simulations of fracture in idealized brick and mortar composites
Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase with low volume fraction (mortar) are a promising pathway to produce stiff, hightoughness composites. For certain ranges of constituent properties, including those of some synthetic analogs to nacre, one can demonstrate that the deformation is dominated by relative brick motions. This paper describes simul...
متن کاملInvestigations on the Reinforcement of Mechanical Properties of Gypsum Composites Containing E-glass Woven Fabrics
Glass fiber reinforced gypsum composites are new building materials that have been used in covering interior walls. Reinforcement by means of woven fabrics as a three dimensional material is an alternative to the use of short fibers. The application of appropriate fabrics can improve mechanical properties of gypsum composites. The aim of this research article is to investigate the effect of the...
متن کاملExperimental Investigation of Toughness Enhancement in Cement Mortar
This paper presents the results of investigation carried out to improve the mechanical toughness of cement mortar. Toughness is a basic parameter which has to be improved in brick walls, concrete roads, machine foundations, dams etc. Materials fails due to an impact force and vibrations resulting in minor cracks and bonding failure between bricks, it leads to failure of the structure. In order ...
متن کاملMechanical Characterization of Glass-Basalt-Carbon/Polyester Hybrid Composites
Influence of the stacking sequences of hybrid composites on the tensile strength, flexural strength, inter-laminar shear strength (ILSS) and impact energy was investigated. The hybrid glass-basalt-carbon/polyester composite laminates were processed by hand lay-up procedure at room temperature. The fracture surface of the composite laminates after the tension and flexural test was examined by sc...
متن کاملEffects of number of freeze-thaw cycles and freezing temperature on mode I and mode II fracture toughness of cement mortar
Natural and artificial materials including rocks and cement-based materials such as concrete and cement mortar are affected both physically and chemically by various natural factors known as weathering factors. The freeze-thaw process, as a weathering factor, considerably affects the properties of rocks and concrete. Therefore, the effect of the freeze-thaw process on the physical and mechanica...
متن کامل